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Electrons in strong magnetic fields can be described by one-dimensional models
in which the Coulomb potential and interactions are replaced by regularizations
associated with the lowest Landau band. For a large class of models of this
type, we show that the maximum number of electrons that can be bound is less
than aZ+Zf(Z). The function f(Z) represents a small non-linear growth
which reduces to ApZ(log Z)2 when the magnetic field B=O(Zp) grows poly-
nomially with the nuclear charge Z. In contrast to earlier work, the models
considered here include those arising from realistic cases in which the full trial
wave function for N-electrons is the product of an N-electron trial function in
one-dimension and an antisymmetric product of states in the lowest Landau
level.

KEY WORDS: Atoms in strong magnetic fields; maximum negative ionization;
one-dimensional models; lowest Landau band.

1. INTRODUCTION

It is well-known that systems in strong magnetic fields behave like systems
in one-dimension, i.e., a strong magnetic field confines the particles to
Landau orbits orthogonal to the field, leaving only their behavior in the
direction of the field subject to significant influence by a static potential.
Motivated by this general principle and the work of Lieb, Solovej, and
Yngvason (l2) (LSY) on atoms in extremely strong magnetic fields,



Brummelhuis and Ruskai (5) initiated a study of models of atoms in homo-
geneous strong magnetic fields in which the 3-dimensional wave-function
has the form

Y(r1, r2,..., rn)=F(x1,..., xn) U(y1, z1, y2, z2,..., yn, zn) (1)

where U lies in the projection onto the lowest Landau band for an
N-electron system. We follow the somewhat non-standard convention of
choosing the magnetic field in the x-direction, i.e, B=(B, 0, 0) where B is a
constant denoting the fields strength, in order to avoid notational confusion
with the nuclear charge Z.

The Hamiltonian for an N electron atom in a magnetic field B is

H(N, Z, B)=C
N

j=1

5|Pj+A|2−
Z
|rj |
6+C

j < k

1
|rj − rk |

(2)

where A is a vector potential such that N×A=B. The ground-state energy
of H(N, Z, B) is given by

E0(N, Z, B)= inf
||Y||=1

OY, H(N, Z, B) YP. (3)

Let Econf0 (N, Z, B) denote the corresponding infimum restricted to linear
combinations of functions of the form (1). For extremely strong fields, it
was shown in ref. 12 that E/Econf0 Q 1 as B/Z4/3

Q. with N/Z fixed.
In this paper we consider EU0 (N, Z, B), the infimum when (3) is

further restricted to those functions of the form (1) corresponding to a
particular choice for U. As discussed in ref. 5, is straightforward to show
that

EU0 (N, Z, B)=`B inf
||F||=1

OF, h(N, Z, B −1/2) FP+NB (4)

where

hU(N, Z, M)=C
N

j=1

5− 1
M

d2

dx2
j

−ZṼUj (xj)6+C
j < k

W̃U
jk(xj −xk), (5)

and we have scaled out the field strength B so that the only remnant of the
magnetic field is in the ‘‘mass’’ M=B −1/2. The effective one-dimensional
potentials ṼUj and W̃U

jk can be written in terms of the functions
(5, 7, 17)

Vm(x)=
1
m!

F
.

0

s2me −s2

`x2+s2
s ds, (6)
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which are discussed in Section 2.1 and studied in detail in ref. l6. The
precise form of ṼUj and W̃U

jk depends on the choice of U; some special cases
are discussed in Section 2. When U is a simple product of one-particle
Landau states, or a finite linear combination of such products, the effective
potentials satisfy ṼUj (x) [ Vm(x) and W̃U

jk(x) \ Vn(x) for some integers m
and n which depend upon U. We will primarily be interested in the case of
symmetrized and anti-symmetrized products of one-particle Landau states.
In this case, as discussed in more detail in Section 2.1 and Appendix A,
bounds of the form above are readily obtained. For those situations in
which n < 2m, a bound on the maximum negative ionization is given in
Theorems 1 and 2.

In ref. 5 we considered the simple, but unrealistic, situation in which U
is a product of Landau states with m=0. In this paper we introduce a
more realistic model, which we call the ‘‘Slater model,’’ in which U is an
antisymmetrized product of Landau states. As in ref. 5, we concentrate on
the question of maximum negative ionization. Define Nmax(Z, B) as the
maximum number of electrons for which the Hamiltonian (5) has a bound
state in the sense E0(N, Z, B) < E0(N−1, Z, B).

LSY (12) showed that in extremely strong magnetic fields, atoms bind
2Z electrons in the sense

lim inf
Z, B/Z3

Q.

Nmax(Z, B)
Z

\ 2. (7)

and conjectured that 2Z was also an upper bound to this limit. However,
even for the simple model in ref. 5 we were only able to show the weaker
bound Nmax(Z, B) < 2Z+1+c`B. Unfortunately, when B > O(Z3) as
required for the limit in (7), the term c`B=cZ3/2 dominates so that we
can only conclude that Nmax(Z, B) [ 2Z+O(Z3/2).

In this note we show that for a large class of one-dimensional models,
including some in which U in (1) is a simple product or a Slater determi-
nant, the bound on Nmax(Z, B) can be improved to one of the form
aZ+Zf(Z) with f(Z)=O(log Z)2 when B grows polynomially with Z.
Our results were announced earlier in refs. 6 and 7 in the form

Nmax(Z, B) [ aZ+Zg(Z, B) (8)

with g(Z, B)=(log Z)2+log Z(log B)1+w for some w > 0. Subsequently,
Seiringer (18) gave a similar bound for the full 3-dimensional Hamiltonian.
For fermions, Seiringer’s bound (18) has the form (8) with g(Z, B)=
min{( B

Z3)2/5, (log B
Z3)2}; it is obtained by applying Lieb’s method to the full
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3-dimensional Hamiltonian. Hainzl and Seiringer (9) then extended this
bound to a density matrix model in which the variable perpendicular to the
field is replaced by discrete angular momentum quantum numbers.

Our use of one-dimensional models was motivated by a desire to
understand the physics associated with the consequence of the one-dimen-
sional character of atoms in strong magnetic fields, which is well-known
and made precise in the work of LSY. (12) Brummelhuis and Duclos (2–4) also
showed that, for each fixed total angular momentum in the field direction,
the full QM Hamiltonian (2) converges in norm-resolvent sense5 to the

5 To be precise, let R be the resolvent of H, and Rs that of Hs. Then ||PsRPs −Rs ||=O(B −1/2)
on PsH, and ||R||=O(B −1/2) on P +

s H at a distance (log B)2 to the spectrum of Hs.

projected Hamiltonian Hs(N, Z, B)=PsH(N, Z, B)Ps where Ps denotes
the orthogonal projection onto the lowest Landau band. In the special case
of zero total angular momentum, OYHs(N, Z, B) YP has the form (5) when
Y has the form (1). Full details will be given in ref. 4. In contrast to ref. l2,
the strategy in refs. 2 and 3 does not require an a priori bound on N in
terms of Z, but does need to fix the total angular momentum in the direc-
tion of the magnetic field.

Despite Seiringer’s result (l8) and the work in ref. 9, we feel that our
argument, which uses the RS localization approach, is of some interest.
Because our analyses of the models in ref. 5 showed that electrons are
highly delocalized in the direction orthogonal to the field, it may seem
surprising that such a localization technique works at all. However, a care-
ful examination of the proof in Section 3, shows that it reflects this delo-
calization in the sense that the ‘‘inner ball’’ grows with B. Nevertheless, the
localization error can be controlled with a modest excess charge as
described in the results which follow.

We now state same rather general results. Applications to special cases
of particular physical interest are described in Section 2.

Theorem 1. Suppose the potentials in the Hamiltonian (5) satisfy

ṼUj (x) [ Vm(x) and W̃U
jk(x) \

1

`2
Vn−1
1 x

`2
2 , (9)

for all j, k and 0 [ n [ 2m. Then for every a > 0 there is a constant Aa > 0
and constants a1, a2 (independent of a) such that the Hamiltonian
hU(N, Z, B) has no bound states provided that

N > 2Z+AaZ1+a, and (10a)

a1eZa/4 > B \ a2Zcn , (10b)

550 Brummelhuis and Ruskai



where the exponent a can be arbitrarily small and the exponent cn depends
upon n. In particular, when n=O(1), it suffices to take cn > 2; when
n=O(N) one must choose cn > 3.

Although the non-linear term is higher order than 2Z, it is useful to
write the linear term separately. It is due to the relative strength of the
potentials near the nucleus, while the non-linear terms are needed to
control the localization error. The upper bound on B is needed for techni-
cal reasons associated with the fact that the localization error can not be
controlled when B grows exponentially. As discussed in Remark 1 of
Section 3.4, the requirement n [ 2m can be relaxed at the expense of replac-
ing 2Z by cZ in (10a) with c > 2.

The non-linear term in the lower bound (10a) can be improved to one
that is logarithmic. We first state it in general and then under the simple,
and realistic, assumption that B=Zp for p > 3. The case cn > 3 in (11b),
corresponds to the superstrong region considered by LSY in ref. 12.

Theorem 2. Assume that the potentials ṼUj and W̃U
jk satisfy (9) with

0 [ n [ 2m. Then there are positive constants A, aE, a2 such that the
Hamiltonian hU(N, Z, B) has no bound states provided that

N > 3Z+1+AZ log Z : log Z2

B
: , and (11a)

aEeZ1/2− E > B \ a2Zcn, (11b)

where E > 0 can be arbitrarily small and cn is as in Theorem 1.

Corollary 3. Assume that the potentials ṼUj and W̃U
jk satisfy (9) with

0 [ n [ 2m and that B=aZp for some a > 0 and p > 3. Then there is a
constant A such that the Hamiltonian hU(N, Z, B) has no bound states
provided that

N > 3Z+AZ(log Z)2. (12)

Each of these results, immediately yields an upper bound on
Nmax(Z, B) which we state for ease of comparison with the results in refs. 7,
9, and 18. Under the hypotheses of Theorem 2

Nmax(Z, B) [ 3Z+A log Z : log Z2

B
: . (13)

Under the hypotheses of Corollary 3

Nmax(Z, B) [ 3Z+AZ(log Z)2. (14)
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Unfortunately, unlike Theorem l, the 3Z in the linear term includes a con-
tribution from the localization error as well as the expected 2Z from elec-
trostatics.

2. EFFECTIVE POTENTIALS

2.1. Regularized Coulomb Potentials

The Landau state with energy B and angular momentum −m can be
written compactly using the complex variable z=y+iz as

cBm(y, z)=[pm!] −1/2 B (m+1)/2z̄me −B |z|2/2. (15)

The effective one-dimensional potentials in our models can be written using
the regularization of the 3-dimensional Coulomb potential with a Landau
state, i.e.,

VB
m(x) — 7cBm,

1
|r|
cBm8=F

R2

|cBm |2

|r|
dy dz

=
Bm+1

m!
F
.

0

s2me −Bs2

`x2+s2
s ds

=
1
m!

F
.

0

ume −u

`x2+u/B
du

=
2Bm+1

m!
eBx2 F

.

|x|
(t2−x2)m e −Bt2 dt, (16)

where r in R3 and s=y2+z2. In view of the rescaling in (4), it suffices to
consider only the case B=1 for which we drop the superscript, i.e.,
Vm(x) — V1

m(x). The properties of Vm(x) were studied in detail in ref. 16 and
summarized in ref. 7. Those which we need here are listed below.

Vm(x) is monotonically decreasing for x \ 0. (17)

Vm+1(x) < Vm(x) <
1
|x|

. (18)

1

`x2+m
> Vm(x) >

1

`x2+m+1
(19)

If Vav(x) —
1
N

C
N−1

j=0
Vj(x), then Vav(x) [ 2VN(x). (20)
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2.2. Simple Product Landau Model

We restrict to wave functions of the form (1) with U=
<N

k=1 c
B
mk

(yk , zk) a simple product of Landau states. Then

Ym1 · · ·mN
=F(x1 · · · xn) D

N

k=1
cBmk

(yk, zk), (21)

and

OYm1 · · ·mN
, H(N, Z, B) Ym1 · · ·mN

P=`B OF, hm(N, Z, B −1/2) FP+NB (22)

where we rescale as in (4) and m=(m1,..., mn). Then

hm(N, Z, M)=C
N

j=1

5− 1
M

d2

dx2
j

−ZVmj
(xj)6+C

j < k
Wmj, mk

(|xj −xk |), (23)

Vm is given by (6) (with B=1) and the effective interaction satisfies

Wm, mŒ(x−xŒ)=7cm é cmŒ,
1

|r− rŒ|
cm é cmŒ8 (24)

= C
m+mŒ

j=0
bj

1

`2
Vj
1 |x−xŒ|

`2
2 (25)

\
1

`2
Vm+mŒ
1x−xŒ|

`2
2 (26)

for some bj \ 0 with ;j bj=1. That Wm, mŒ can be written as a convex sum
as in (25) was shown in ref. l3. For completeness, a proof in the special case
m=mŒ is included in the Appendix. When m=mŒ=0 (25) reduces to
W0, 0(|x−xŒ|)= 1

`2
V0 (|x−xŒ|

`2
) as shown in ref. 5.

When all mj=m are equal, we denote the effective Hamiltonian in
(23) by hm(N, Z, M) and refer to it as the m-momentum Landau model. For
this model, ṼU(x)=Vm(x) and W̃U(x)= 1

`2
V2m( x

`2
). The case m=0 was

considered in refs. 5 and 7.

Corollary 4. Let hm(N, Z, B −1/2) be the Hamiltonian described
above. Then for any a > 0 and any B satisfying a1eZa/4 > B \ a2Z2+e for
suitable constants a1, a2 and some e > 0, there exists a constant Aa > 0

Nmax(Z, B) [ 2Z+AaZ1+a. (27)
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Moreover, when B=aZp for some p > 3, one can find a constant A
(depending on a, p) such that

Nmax(Z, B) [ 3Z+AZ(log Z)2. (28)

The Thomas–Fermi theories introduced by LSY in ref. l2 for the
superstrong and hyperstrong regimes have a kinetic energy term typically
associated to bosonic systems. It seems therefore reasonable to consider
hm(N, Z, B −1/2) with domain in the symmetric wave functions. This is
however in clear contradiction with the fact that the electrons described by
the original 3-dimensional Hamiltonian (2) are fermions, and (1) should be
anti-symmetric. Therefore, in the next section, we introduce a model which
reflects the anti-symmetry.

2.3. A Slater Determinant Landau Model

It is reasonable to expect that the electrons will try to satisfy the Pauli
principle by going into different orbits in the lowest Landau band, and that
any realistic one dimensional model will have similar behavior. We now
consider the special case in which Y has the form (1) with U an anti-sym-
metrized product constructed using m=0, 1, 2,..., N−1. Thus, we let

U=1 1

`N!
c0 N · · · N cN−1

2 , (29)

where the wedge N denotes the anti-symmetric product so that U is a Slater
determinant in the Landau states cj for j=0,1,..., N−1. In this case,

OH(N, Z, B) Y, YP=`B Ohdet(N, Z, B −1/2) F, FP+NB (30)

with

hdet(N, Z, M)=C
N

j=1

5− 1
M

d2

dx2
j

−ZVav(xj)6+C
j < k

Wdet(|xj −xk |), (31)

where

Vav(x)=
1
N

C
N−1

j=0
Vj(x) (32)

and the effective interaction is

Wdet(x)=
1

`2
C
N−2

j=0
b2j+1V2j+1
1 x

`2
2 (33)

554 Brummelhuis and Ruskai



with b2j+1 \ 0 and ;N−2
j=0 b2j+1=1. It then follows from (17) that

Wdet(x) \
1

`2
V2N−3
1 x

`2
2 . (34)

To verify (32) recall that the cj’s are normalized and mutually orthog-
onal. Thus

1
N!
7c0 N · · · N cN−1,

1
|rj |
c0 N · · · N cN−1

8

=
1
N

C
N−1

k=0

7ck,
1

|rj |
ck8

=
1
N

C
N−1

k=0
Vk(x)=Vav(x) < 2VN(x) (35)

where we used (20) in the last line. Expression (33) for Wdet(x) is proved in
the Appendix.

Corollary 5. Let hdet(N, Z, B −1/2) be the Hamiltonian described
above. Then for any a > 0 and any B satisfying a1eZa/4 > B \ a2Z3+e for
suitable constants a1, a2 and some e > 0, there exists a constant Aa > 0

Nmax(Z, B) [ 4Z+AaZ1+a. (36)

Moreover, when B=aZp for some p > 3, one can find a constant A
(depending on a, p) such that

Nmax(Z, B) [ 6Z+AZ(log Z)2. (37)

2.4. Other Models

For any fixed choice of Landau functions cm1
· · · cmN

the effective
potentials ṼU and W̃U can be computed explicitly for both the case of a
simple product and that of a Slater determinant. However, general for-
mulas6 are not so easily obtained. Nevertheless, the results in the Appendix

6 In the special case, U=<N
k=1 c

B
mk

(yk, zk) with all mk odd, W̃U is given by a convex sum
which contains only V2j with even subscripts as in (74).

hold rather generally in the sense that W̃U is a convex combination of the
form ;J

i=0 bi
1
`2

Vi(
x
`2

) with J % 2 maxk |mk |.
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Thus, one might hope to obtain bounds on the effective potentials
similar to those in (9) but without the constraint n [ 2m. In fact, one easily
finds W̃U(x) \ 1

`2
Vn−1(

x
`2

) with n=2 max |mk |. However, bounds better
than ṼU(x) [ V1(x) are not so easily obtained. In situations in which
bounds of the form

ṼU(x) [ cVm(N)(x), W̃U(x) \
1

`2
Vn(N)−1
1 x

`2
2 (38)

hold with the dependence of m and n on N known, this would lead to
similar bounds on Nmax(Z, B) with the contributon of 2Z to the linear term
replaced by one of the form oZ with o depending on the relative size of
m(N) and n(N).

3. PROOFS

3.1. Localization

The proof of the main theorem will use the RS localization method
which is summarized in ref. 8. The argument used here requires some
refinements discussed in more detail in refs. 14 and 15.

Let G0, G1,..., GN denote a partition of unity consisting of functions
which are Lipschitz continuous on RN and satisfy ;N

j=0 G2
n(x)=1 as well

as the following additional properties:

(i) supp(G0) … {x: ||x||. [ (1+d) r},

(ii) supp(Gk) … {x: ||x||. \ r, |xk | > 1
1+d ||x||.} for 1 [ k [ N,

(iii) ;N
j=0 |NGi |2 < l (logN)2

d
2
r
2 on supp(G0), and

(iv) ;N
j=0 |NGi |2 < l (logN)2

d
2x2k

[ l (logN)2

d
2
r |xk|

on supp(Gk),

where l is a constant and N denotes the gradient in all the variables
x1,..., xN. The existence of a partition with these properties is guaranteed by
the constructions in refs. 14 and 15.

In many applications, one wants a ‘‘sharp’’ localization which is
achieved by choosing d so that dQ 0 as Z Q., e.g., d=Z −a for some
a > 0. In such situation, it often suffices if ||x||. [ 2r on supp(G0). In this
paper, the term ‘‘localization’’ is a bit of a misnomer, as the radius r of the
‘‘inner ball’’ will grow with Z. In this case, it can be advantageous to let the
localization be far from sharp and even permit d to grow with Z.
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Now let h(N, Z, B −1/2) be as in (5), and note that the IMS localization
formula (8) implies that for any F(x1,..., xN) in the domain of h=
h(N, Z, B −1/2),

OF, h FP=C
N

n=0
OGnF, h GnFP−OF, LE(x) FP (39)

=C
N

n=0
OGnF, [h (N, Z, B −1/2)−LE(x)] GnFP, (40)

where LE(x) denotes the localization error

LE(x)=`B C
N

n=0
|NGn(x)|2. (41)

It follows from properties (iii) and (iv) of Gk that the localization error is
bounded above by

L0 — l
`B(log N)2

d2r2
on supp(G0) (42a)

Lk — l
`B(log N)2

d2r |xk |
on supp(Gk), k=1,..., N. (42b)

To prove Theorem 1 it suffices to show that

(GkF, [h(N, Z, B −1/2)−Lk] GkFP \ e0(N−1, Z, B) ||GkF
2|| (43)

for k=0, 1,..., N with e0(N, Z, B) the ground state energy of
h(N, Z, B −1/2). Since (43) is equivalent to

(GkF, [h(N, Z, B −1/2)−Lk −e0(N−1, Z, B)] GkFP \ 0, (44)

it suffices to show that the quantity in square brackets in (44) is positive on
supp(Gk) for each k=0, 1,..., N. It is useful to handle the cases G0 (inner
ball estimates) and G1 · · ·GN (outer estimates) separately.

In the next two sections, we use the convention that c and C denote
constants in the sense that some constant exists for which the indicated
bound holds.

3.2. Inner Ball Estimates

On the inner ball (i.e., on supp(G0)) the 1-dimensional Hamiltonian (5)
with effective potentials satisfying (9) can be bounded by
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h(N, Z, B −1/2) \ Ne0(1, Z,`B)+
N(N−1)

2`2
Vn−1
12(1+d) r

`2
2 (45)

\ −CN
Z2

`B
1 log Z2

B
22+N(N−1)

2
1

`4(1+d)2 r2+2n
(46)

where we used h(N, Z, M) \ Ne0(1, Z, M) + ;j < k W̃U
jk (|xj − xk |),

|xj −xk | < 2(1+d) r on supp(G0), property (19) and

−`B
d 2

dx2−ZVm(x) \ e0(1, Z,`B) \ −C
Z2

`B
1 log Z2

B
22. (47)

The lower bound in (47) above follows from the asymptotic formula in
ref. 1 for the ground state energy of the one-electron Hamiltonian on the
left in (47). Now (ignoring the difference between N and N−1), the right
side of (46) will be positive if

(1+d)2 r2+
n

2
<

1
C

N2B

Z4(log Z2

B )4
. (48)

Since we can assume Z [ N, the right side of (48) will be greater than n for
sufficiently large N, Z if

B >
n

N
Z3+e (49)

for some e > 0. For bosonic models we are be primarily interested in the
case n=O(1) for which (49) holds if B > Z2+e; for anti-symmetric models,
n=O(N) so that we need B > Z3+e. For now, we assume that (49) holds, in
which case the requirement (48) can be rewritten as

(1+d)2 r2 <
1
C

N2B

Z4(log Z2

B )4
−
n

2
<

1
2C

N2B

Z4(log Z2

B )4
. (50)

Thus we can ensure that the right side of (46) is positive by choosing

r=c
1

1+d
N`B

Z2(log Z2

B )2
(51)

for some constant c independent of N, Z, B, d.
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Then, since −e0(N−1, Z, B) \ 0, condition (44) will hold for G0 if

−CN
Z2

`B
1 log Z2

B
22+ N2

2`4(1+d)2 r2+2n
−l
`B (log N)2

d2r2
> 0. (52)

The first two terms in (52) behave like +CN Z2

`B
(log Z2

B )2 and the third like

−l (d+1
d )2 (logN)2 Z4(log Z2

B )4

`B N2 . Comparing these expressions, we find that (using
the assumption that N > Z) control of the localization error requires

l 1d+1
d
22 <

N

(log N)2 (log Z2

B )2
1N

Z
22. (53)

We consider two cases of small and large d separately.

(a) When d=Z −a, the left side of (53) behaves like l

d
2 . In this case

(53) holds with r given by (51) provided that N > Z is sufficiently large and
B [ CeZ1/2− E

for some E > a.

(b) When d > 1, we can use the fact that d+1
d [ 2 to see that (53) holds

for any d > 1 if N > Z and B [ CeZ1/2− E
for some E > 0. Alternatively, we

can eliminate the upper bound on B by letting N grow with B as well as Z.
In particular, (53) holds for any d > 1 if N > Z log Z2

B .

3.3. Outer Ball Estimates

For any k such that 1 [ k [ N, we can write

hU(N, Z, M)=hUk (N−1, Z, M)−
1
M

d2

dx2
k

−ZṼUk (xk)+ C
j: j ] k

W̃U
jk(xj −xk) (54)

with the understanding that hUk (N−1, Z, M) is the Hamiltonian obtained
by omitting terms in (5) involving xk, but with potentials defined by the
N-particle state U. Let EU, k0 (N−1, Z, B) denote the corresponding ground
state energy. Since hUk (N−1, Z, M) \ EU, k0 (N−1, Z, B) and − d2

dx2
\ 0, it

follows that

(GkF, [hU(N, Z, B −1/2)−Lk −EU, k0 (N−1, Z, B)] GkFP (55)

\ 7GkF, 5−ZṼUk (xk)+ C
j: j ] k

W̃U
jk(|xj −xk |)−Lk

6 GkF8 . (56)
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For simplicity, we henceforth omit indices j, k on E0, Ṽ, W̃ and assume7

7 Since the bounds on Ṽ and W̃ are independent of j this is not a significant restriction. In the
case of distinguishable particles, one need only compare toEU, k0 (N−1, Z, B) for a particular k.
When indistinguishable particles are associated with an asymmetric product of Landau
states, the full wave function must be a linear combination of states of the form (1) with
terms associated with irreducible representations of Sn to yield the appropriate total symme-
try; this is a more complex situation than the simple product model considered here.

that U is a symmetrized or anti-symmetrized product.
Now for x ¥ supp Gk we have that |xj −xk | [ |xj |+|xk | [ (2+d) |xk |, so

that

W̃U(|xj −xk |) \
1

`2
Vn−1
1 |xj −xk |

`2
2 \ 1

`2
Vn−1
1 (2+d) |xk |

`2
2

\
1

`(2+d)2 x2
k+2n

=
1
2

1

`(1+d
2)

2 x2
k+

n
2

, (57)

where we used (17) and (19).
It follows from the upper bound in (19) that

ṼU(xk) [ Vm(xk) [
1

`x2
k+m

. (58)

Thus

−ZṼU(xk)+ C
j: j ] k

W̃U(xk) \ −
Z

`x2
k+m

+
N−1

2
1

`(1+d
2)

2 x2
k+

n
2

. (59)

If one ignores d, the right side of (59) is approximately

−Z

`x2
k+m

+
N
2

1

`x2
k+

n
2

(60)

which will be positive if N > 2Z and n < 2m.
This explains the origin of the linear term in Theorem 1. It remains to

take into account the localization error (42b). When dQ 0 one need only
choose N−2Z large enough to control (42b). When larger choices of d are
made, one pays the price of an increase of Zd in the electrostatic estimates,
as shown in (64) below.

Substituting (59) in (56) and using the estimate (42b), one finds that
(56) is bounded below by

7GkF,
T(xk)

`(1+d
2)

2 x2
k+

n
2

GkF8 , (61)
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where

T(x)=−Z=(1+d
2)

2 x2+n
2

x2+m
+

N−1
2

−l
`B(log N)2

d2r

=11+
d

2
22+ n

2x2 . (62)

Expression (61) will be positive, ensuring that (44) holds for k=1,..., N, if
T(x) > 0 for |x| > r. Since |xk | \ r on supp(Gk), we find that, with r given
by (51),

n

2x2
k

[
n

2N
Z3

B
Z
N
1 log Z2

B
24 [ 1 (63)

when N > Z and (49) holds. Thus, we can conclude that

2T(x) \ N−1−2Z=(1+d
2)

2 x2+n
2

x2+m
−2l

(1+d)2 (log N)2 (log Z2

B )2 Z2

d2N

\ N−1−2Z 11+
d

2
2−2l

(log N)2 (log Z2

B )2 Z2

N
(1+d)2

d2
(64)

where the second inequality used the assumption n < 2m.
Now, we can analyze the N-dependence of the right side of (64) by

writing it in the form

2T(x) \ N−
(log N)2 Q

N
−R (65)

where Q, R are positive and may depend on Z, B, d but are independent
of N. The expression on the right is increasing in N. Hence, for any fixed
choice of Z, B, d, if it is positive for some critical N=Nc, then it will be
positive for all N > Nc.

3.4. Completion of Proofs

To prove Theorem 1, choose Nc=2Z+1+aZ1+2a. Then

2T(x) \ Z 5aZ2a−c
[(1+2a) log Z]2 (2 log Z− log B)2

d2Z2a −d6 . (66)

Thus if d=O(Z −a), then for sufficiently large Z,

2T(x) \ Z 5aZ2a−c(log Z)2 (2 log Z− log B)2−Z −a6 (67)
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which can be made positive for sufficiently large Z as long as log B
< C Za

log Z , for some suitable constant C. This will be true if B [ a1eZa/2 for
some constant a1. Replacing a by a/2 yields Theorem 1.

To improve the Za growth of N to one involving only logarithmic
terms, as in Theorem 2, one can not let dQ 0. Moreover, the term (d+1)2

d
2 in

(64) implies that one can not decrease the localization error by choosing d
large. Therefore, we simply take d=1, in which case (64) becomes

2T(x) \ N−1−2Z−Z−c
(log N)2 (log Z2

B )2 Z2

N
. (68)

We now set N=Nc in (68) and write Nc=2Z+1+Zf(Z, B). Then

2T(x) \ Z 5f(Z, B)−1−c
(log Z2

B )2 (log Z+log f(Z, B))2

f(Z)
6 . (69)

The inner ball estimates in Section 3.2 require B=O(exp Z1/2− e). Under
this assumption, Theorem 1 implies that f(Z, B) grows more slowly than
Za for some suitable a, so that log f(Z, B) [ log Z for sufficiently large
Z. Hence we can find a constant A such that the right side of (69) is posi-
tive when f(Z, B)=A |log Z2

B | log Z. (Note that |log Z2

B | will stay bounded
away from 0, due to the lower bound B > Zcn, cn > 2, which ensures that
f(Z, B) > 1 for big Z.) This proves Theorem 2.

Since our hypotheses do not permit B to grow exponentially with Z
and the case of greatest interest is polynomial growth, e.g., B=Z3+e, it is
useful to restate our results under the assumption that B=Zp for some
p > 0. In that case, we can conclude that there is a constant A, depending
on p, such that (69) is positive for f(Z)=A(log Z)2, which proves
Theorem 3. This also gives a bound of Nmax(Z, Zp) [ 2Z+AZ(log Z)2.

Corollary 3 follows immediately from Theorem 2 and the discussion
above.

To prove Corollary 4, it suffices to observe that the hypotheses of
Theorems 1 and 2 hold with m=m, and n=2m. Unless m depends upon N,
we now have n=O(1) so that (49) holds if B > Z2+e.

To prove Corollary 5 for the Slater model, note that it follows from
(20) and (32) that ṼU(x)=Vav(x) [ 2VN(x), and from (34) that W̃U(x) \
V2N−3(x). Thus, hdet(N, Z, M) satisfies the hypotheses of Theorems 1
and 2 with m=N, n=2N−2, but with Z is replaced by an effective charge
of 2Z. This has the effect of doubling the coefficient in the linear term and
modifying the constant in the non-linear term. Since n is O(N), (49)
requires B > Z3+e.
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Remark. With more technical effort some of the hypotheses can be
relaxed and/or estimates improved as sketched below.

1. The condition n [ 2m is needed only for the bound
`((1+d

2)
2 x2+n

2)/(x2+m)|x % 0 [ 1 implicitly used in (64). However, this is
actually used only in analyzing the outer region for which one can assume
|xk | \ r is much larger than 0. Hence, with a bit more effort, this condition
can probably be dispensed with. At worst, allowing n > 2m would only
change the coefficient of the (lower order) linear term.

2. The upper bound B [ CeZ1/2− e
is somewhat artificial. It arises

because we have chosen to state our results in a way that emphasizes the
dependence of Nmax(Z, B) on Z. More rapid growth of B will increase the
confinement of the electrons in two dimensions, but make them more
delocalized in the direction orthogonal to the field. Hence, it is not surpris-
ing that the localization error will be harder to control if B grows
exponentially with Z.

In the case of Theorem 2, one can eliminate the need for this upper
bound in controlling the localization error on the inner ball by using the
fact that N

Z > log Z2

B . This was noted in remark (b) after (53). However, if B
grows exponentially with Z, then the estimate log f(Z, B) < log Z used
after (69) will no longer be valid. The upper bound can be eliminated by
allowing Nc to grow sufficiently with B. The choice f(Z, B)=(log Z)2+
log Z(log B)1+w for some w > 0 will suffice. This proves the result stated as
Theorem 3.1 in ref. 7 and given after (8) in the introduction.

3. The linear term in the Slater model is doubled because we use the
estimateVav(x) [ 2VN(X)which gives an effective charge of 2Z rather thanZ.
Although this bound is tight near x % 0, it is used only in the outer ball
where |xk | > r and one would expect Vav(x) % VN(x) % VN−1(x). (Note that
since n=2(N−1) it would suffice to have a bound with m=N−1.)

In fact, using results in refs. 7 and 16 one can show that

Vav(x)=2VN(x)−
2x2

N
11

x
−VN−1(x)2 (70)

% 2VN(x)−
1

`x2+N
+O 1N

x2
2 . (71)

When |x| > p, and B > Z3 this becomes

Vav(x) % 2VN(x)−
1

`x2+N
+O 1 (log Z)4

N
2

[ VN(x)+C
1
Z

(72)
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for sufficiently large Z and N > Z1+a Thus, one could expect to show that
(36) can be replaced by Nmax(Z, B) [ 2Z+AaZ1+a in Corollary 5 by using
more refined estimates for Vav(x). This would give the expected behavior of
2Z for the linear term when B grows more rapidly than Z3.

4. DISCUSSION

The first step of the RS method is to divide the system into a small
‘‘inner’’ ball in which binding is precluded because the electrons are
confined to a small region, and an ‘‘outer’’ ball in which the localization
error becomes negligible as Z Q.. For bosonic systems, one expects to be
able to squeeze the electrons closer together, yielding a smaller cut-off r
than for fermions. This feature is the only factor which precludes extending
the proof of asymptotic neutrality in ref. 11 to bosonic atoms. This
suggests that the localization error is not simply a technical artifact, but a
reflection of a real physical effect. In the one-dimensional models con-
sidered here, the anti-symmetry required by the fermionic nature of elec-
trons is achieved entirely within the Landau band. This results in a one
dimensional model that is bosonic, with the anti-symmetry reflected only in
the effective potentials.

The one-dimensional confinement also delocalizes the electrons. This is
reflected by the the effective mass of M=B −1/2 in (5) which implies that in
strong fields the electrons behave like extremely light particles. The uncer-
tainty principle then implies that trial wave functions which localize the
electrons cannot yield bound states. Thus, it may seem rather surprising
that localization methods can be applied successfully. For atoms in strong
magnetic fields, this terminology may be misleading because the cut-off
radius r is not small. Instead r ’ N`B Z −2(log Z2

B ) −2 which grows with B.
Thus, localization methods can be used to obtain (non-optimal) upper
bounds on Nmax despite the fact that the electrons are highly delocalized
and the size of the ‘‘inner’’ region becomes large as B Q..

Lieb’s method can be interpreted as a different type of localization in
which Gk is essentially the inverse square root of the potential. In three
dimensions, the resulting localization error can be completely controlled
by the kinetic energy, eliminating the need for an additional inner/outer
delocalization provided that the magnetic field goes to zero at infinity.
However, as discussed in Section 3 of ref. 5, control of the localization
error is more complex in models resulting from the types of magnetic fields
considered here.

When Lieb’s method was applied to a one-dimensional model in ref. 5
control of the localization error led to a `B growth in N. In ref. 18
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Seiringer showed that better bounds can be obtained if one applies Lieb’s
method to the full 3-dimensional Hamiltonian, yielding results comparable
to those obtained here.

One might try to combine Lieb’s method with the inner/outer
localization used here, i.e., in Section 3.1 use G0 as in (i) but in (ii) replace

Gk by = 1−G2
0

ṼU(xk)
for k \ 1. In the case of the simple 0-model, the argument

given in Section 4 of ref. 5 can be used in the outer region with the term
limxQ 0

|nŒ(x)|2

4n(x) replaced by
|nŒ(r)|2

4n(r) . With r as in Section 3.2, this would, yield a
net bound of

Nmax(Z, B) [ 2Z+AZ : log Z2

B
: (73)

which is a very slight improvement.8 To extend this to m ] 0, would require

8 The change from a quadratic to a linear dependence on log Z is due to the fact that the LE
arising from G0 does not require a (log N)2 in the numerator in (iii) and (iv), resulting in a
net bound of the form l

r
2 .

additional work. However, for |x| > r one should be able to show that
[Vm(x)] −1 %`x2+m to obtain a similar bound. In the case of the Slater
model, one would also need estimates of the type discussed in Remark 3.

APPENDIX A

We begin by proving a special case of Pröschel, et al. ’s result (l3) that
the effective interaction WmmŒ(x1 −x2) can be written as a convex combina-
tion of potentials of the form 1

`2
Vj(

x1 −x2
`2

) with j [ m+mŒ. In the special case
m=mŒ, only terms with even subscript occur in the convex combination.

Lemma 6. The effective interaction Wmm(x1 −x2) defined in (25)
satisifies

Wmm(x1 −x2)=C
m

j=0
b2j

1

`2
V2j
1 (x1 −x2)

`2
2 , (74)

with b2j > 0 and ;m
j=0 b2j=1.

Proof. Substituting for cm in (24) and writing out the resulting
integral yields

Wmm(x1 −x2)=
1
pm!

F
C
F
C

dz1 dz2
|z1 |2m |z2 |2m e −|z1|

2
e −|z2|

2

`(x1 −x2)2+|z1 −z2 |2
. (75)
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We now make the complex change of variables to

s — 1
`2

(z1+z2) y — 1
`2

(z1 −z2)

s=|s|= 1
`2

|z1+z2 | t=|y|= 1
`2

|z1 −z2 |
(76)

and let h be the angle between s and y. Then |z1 |2+|z2 |2=s2+t2 and

|z1 |2 |z2 |2=(s2+t2+2st cos h)(s2+t2−2st cos h)

=s4+t4−s2t2 cos 2h. (77)

Substituting in (75) yields

Wmm(x1 −x2)=
2
m!

F
.

0
e −t2t dt F

.

0
e −s2s ds F

2p

0
dh

(s4+t4−s2t2 cos 2h)m

`(x1 −x2)2+2t2
. (78)

Performing the integral over s and h yields

Wmm(x1 −x2)=F
.

0
e −t2t dt

P(t2)

`(x1 −x2)2+2t2
(79)

for some polynomial P(u) of degree 2m. Writing P(u)=;2m
i=0 biu i, and

substituting in (79) immediately yields

Wmm(x1 −x2)=C
2m

i=0
bi

1

`2
Vi
1x1 −x2

`2
2 . (80)

It remains only to show that the coefficients bi are even, positive and sum
to one. Applying the binomial expansion to the numerator in (78), one
easily sees that terms with i=2j have positive coefficients b2j > 0. When
i=2j+1 is odd, one has an integral of the form >2p0 cos2j+1 2h dh=0 which
implies b2j+1=0. Thus, only the coefficients with i=2j survive, and these
are positive. To see that ;m

j=0 b2j=1, it suffices to use the fact that both
Wmm(x) and all Vi(x) behave like 1/|x| at infinity.

When m ] mŒ the integrand will contain an additional factor of the
form (s2+t2+2st cos h) |m−mŒ|. As above, one can show that terms involving
cos j h integrate to zero when j is odd.

One can use a similar strategy to show that any inner product of the
form

7cj(z1) ck(z2),
1

|r1 − r2 |
cj(z1) ck(z2)8 or (81a)

7cj(z1) ck(z2),
1

|r1 − r2 |
ck(z1) cj(z2)8 (81b)
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can be written as a linear combination ; j+k
j=0 cj

1
`2

Vj(
(x1 −x2)

`2
) with ;j cj=1.

In the case of (81a), as sketched above and shown in ref. 13, the coefficients
cj are positive giving a convex combination. For the exchange integrals
(81b), this need not be true. However, for antisymmetric products, the two
types of integrals arise together in combinations whose net coefficients are
positive, as shown below.

Lemma 7. For any choice of 0 < m1 < m2 < · · · < mN,

Wm1 · · ·mN
det (x1 −x2)=

1
N!
7cm1

N · · · N cmN
,

1
|r1 − r2 |

cm1
N · · · N cmN
8

=
1

`2
C
J

j=0
b2j+1V2j+1
1x1 −x2

`2
2 , (82)

with b2j+1 \ 0 and ;j b2j+1=1, and J=mN−1+mN.

In the Slater model, we have mk=k−1, from which it follows that
J=2N−3.

Corollary 8. For the Slater model, the effective interaction in
hdet(N, Z, B −1/2) (5) is a convex combination of Vm with odd m=
1, 3,..., 2N−3, i.e.,

W̃U(x1 −x2)=Wdet(x1 −x2)=
1

`2
C
N−2

j=0
b2j+1V2j+1
1x1 −x2

`2
2 , (83)

with b2j+1 > 0 and ;N−2
j=0 b2j+1=1.

Proof. To prove Lemma 7, we first consider the special case N=2.
Let j, k be fixed, and write

W j, k
det (x1 −x2)=2 7cj N ck(z1, z2)

1
|r1 − r2 |

cj N ck(z1, z2)8

=F
C
F
C

|z j1z
k
2 −zk1z

j
2 |

2 e −|z1|
2− |z2|

2

`(x1 −x2)2+|z1 −z2 |2
dz1 dz2, (84)

where we used (15) and as before, rj=(xj, yj, zj) and zj=yj+izj. Now
make a change of variables as in (76). Using the binomial expansion, we
find

z j1z
k
2=2 −(j+k)/2 C

j

n=0
C
k

m=0
(−1)m 1 j

n
2 1k
m
2 ym+ns j+k−(m+n),
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so that

z j1z
k
2 −zk1z

j
2= C

j+k

a=0
Aayas j+k−a, (85)

where

Aa=2 −(j+k)/2 C
n+m=a
n [ j, m [ k

[(−1)m−(−1)n] 1 j
n
21k
m
2

and we suppress the dependence of Aa on j, k. When a is even,
(−1)m=(−1)n so that Aa=0. Therefore, only terms with a odd survive in
the sum (85). Moreover,

W j, k
det (x1 −x2)=F

C
F
C

|z j1z
k
2 −zk1z

j
2 |

2 e −|z1|
2− |z2|

2

`(x1 −x2)2+|z1 −z2 |2
dz1 dz2

= C
a odd

C
b odd

AaĀb F
C
F
C

yaȳbs j+k−as̄ j+k−b

`(x1 −x2)2+2t2
e −s2−t2 ds dy. (86)

Next, write y=te ij and use the fact that

F
C
yaȳbf(t) dy=F

.

0
ta+bf(t) dt F

2p

0
e ij(a−b) dj

is zero if a ] b to see that the integral (86) becomes

(2p)2 C
a odd

|Aa |2 F
.

0
s2(j+k−a)+1e −s2 ds F

.

0

|t|2a+1 e −t2

`(x1 −x2)2+2t2
dt. (87)

Integrating over s then yields

W j, k
det (x1 −x2)= C

a odd
ba

1

`2
Va 1

x1 −x2

`2
2 ,

for suitable constants ba, of which we only want to note that they are
strictly positive when a is odd and in the range 1 [ a [ j+k. As before,
; j bj=1 follows easily from the fact that both Wdet(x) and the Vj(x)
behave like 1/|x| at infinity. This proves Lemma 7 in the case N=2.
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The general case then follows from the fact that an N-particle Slater
determinant is a convex combination of two-particle Slater determinants.
In fact,

Wm1 · · ·mN
det (x1 −x2)=

1
N!
7cm1

N · · · NcmN
,

1
|r1 − r2 |

cm1
N · · · NcmN
8

=
2

N(N−1)
C
j < k

7cmj
Ncmk

(z1, z2),
1

|r1 − r2 |
cmj

Ncmk
(z1, z2)8

=
2

N(N−1)
C
j < k

Wmj, mk
det (x1 −x2). (88)
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